بررسی اثر فقر بر کیفیت محیط زیست در کشور های در حال توسعه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار دانشکده اقتصاد دانشگاه علامه طباطبائی، تهران، ایران.

2 دانش‌آموخته کارشناسی ارشد اقتصاد محیط زیست، تهران، ایران.

چکیده

رابطه بین فقر و تخریب محیط زیست به علت اهمیت و ابعاد مختلف آن از سال‌ها قبل مورد توجه ‏پژوهشگران، فعالان محیط زیست، سیاست‌گذاران و فعالان اجتماعی بوده است. پژوهش‌های گوناگونی ‏برای بررسی اشکال مختلف تأثیر این دو پدیده بسیار مهم بر یکدیگر انجام شده و نظرات متفاوتی در ‏مورد تأثیرگذاری و تأثیرپذیری آن‌ها از یکدیگر ارائه شده است. نظریات متفاوتی در زمینۀ تأثیر فقر بر ‏تخریب محیط زیست وجود دارد. برخی از نظریه‌ها فقرا را به علت تنگدستی، ناخواسته عامل تخریب ‏محیط زیست می‌دانند؛ درحالی‌که برخی دیگر قدرتمندان و ثروتمندان را عامل اصلی تخریب محیط ‏زیست به ‌حساب می‌آورند. در این مقاله با استفاده از چارچوب فرضیه منحنی محیط زیستی کوزنتس به ‏بررسی تأثیر سهم جمعیتی که زیر خط فقر زندگی می‌کنند، بر انتشار آلاینده دی‌اکسیدکربن و ردپای ‏زیست‌محیطی در کشورهای در حال توسعه پرداخته شده است. همچنین با توجه به ادبیات موضوع ‏متغیرهای مرتبط نیز برای بررسی اثر آن‌ها به الگو وارد شدند. داده‌ها دارای ساختار پنل دیتا هستند و ‏محدوده سال‌های 1990 تا 2016 را شامل می‌شوند. برای برآورد تجربی الگو از روش ‏GMM‏ استفاده ‏شد. نتایج برآوردها تأییدکنندۀ اثر فقر بر تخریب محیط است.‏

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the Effect of Poverty on Environmental Quality in Developing Countries

نویسندگان [English]

  • Hamid Amadeh 1
  • Sajad sadeghi 2
1 Associate Professor of Faculty of Economics, Allameh Tabataba'i University, Tehran, Iran.
2 Master of Environmental Economics,‎ Allameh Tabataba'i University, Tehran, Iran.
چکیده [English]

Abstract
Introduction
Attention to the environment and pollution caused by human activities is receiving more and more attention, due to the impact it has on people's lives and well-being. This attention, the laws enacted in this area, and the level of compliance with the laws enacted have a significant relationship with the income of countries worldwide.
The issue of poverty and environmental protection are both complex issues that have different dimensions and both have a great impact on the quality of life of the people, and it is because of these complexities that policymaking in this area becomes difficult. For this reason, studying it can reveal the connection between these two sectors and provide a lot of information to policymakers in this sector. This issue becomes more important, because a large part of the people who are economically vulnerable usually live in areas that are under various environmental pressures.
Theoretical Framework
Ravallion (2015) in his book The Economics of Poverty states that poverty exists in a given society when individuals in the society have not achieved a minimum reasonable amount of economic well-being commensurate with the standards of the society. Criteria of measuring the poverty vary in different societies, and therefore it is difficult to examine it globally. To solve this problem, economists have sought to create criteria that can be used globally. To measure poverty, cannot rely on a single unit of measurement, but several measures must be used. However, because there is a need for a criterion for measuring poverty, the one dollar a day line has been used as the basis for measurement, based on which approximately one billion of the poorest people in the world can be identified.
To further refine the classification, the World Bank has developed new standards for poverty for those living in middle-and high-income countries. These poverty lines are set at $3.2 per day for lower-middle-income countries, $5.5 per day for high-middle-income countries, and $21.7 per day for high-income countries.
Environmental Kuznets Curve
Various theories and reasons have been put forward in explaining the EKC. According to one theory based on the Solow growth model, the EKC can represent three stages of the development process, in such a way that: 1) in the first stage, most of the production is related to the agricultural sector, which is relatively less polluting. 2) in the next stage of development, the production of heavy industries increases, which cause relatively high pollution, and then 3) the production of industries with advanced technology and services dominate over other sectors, which produce relatively lower levels of pollution.
Methodology
Many economic relationships involve dynamic processes. Dynamic models in the framework of panel data are very popular in labor economics, development economics, and macroeconomics in general. Including the lag of the dependent variable as independent variable provides dynamic adjustment in an econometric model. At the same time, the lag of the dependent variable is associated with cross-sectional special effects and can cause the endogeneity problem. The endogeneity problem may cause inconsistency of OLS estimators. The use of instrumental variable (IV) methods or the GMM method allows for consistent parameter estimation for limited time-period data with large cross-sections. Among these estimators, the GMM system estimator has become increasingly popular. This is because it provides efficient inference using minimal statistical assumptions.
The GMM method is used when the number of sections is greater than or equal to the number of time periods. Also, the number of instruments should be less than the number of groups. There are several tests to check the suitability of using this method. Serial correlation test of regression residuals, such that in GMM estimation, error terms can have first-order serial correlation (AR (1)) and not have second-order serial correlation (AR (2)). The Sargan and Hansen test tests the validity of the instruments used in the estimation, which if the null hypothesis is rejected, the instrumental variables used in the model are valid. The research model is based on the research of Marson and Subramaniam (2019). According to previous research, we predict that the estimated coefficient related to poverty will be positive. In this study, according to the research of Rizek and Slimin (2018), the per capita valueadded variable of the industrial sector and also considering the importance and impact of the unemployment variable, this variable is also added to the model and it is examined whether these two variables have an effect on environmental degradation.
Results
According to the results of the stationarity test, the null hypothesis of the existence of a unit root for all variables has been rejected at the 99% confidence level, indicating that the variables under study are stationary.
According to the results of the estimates, the effect of poverty on environmental degradation is significant. Based on the results in the model with the dependent variable of ecological footprint, the estimated coefficient of the poverty variable is 0.021 and in the model with the dependent variable of per capita carbon dioxide emissions, it is 0.05. This means that a one percent increase in the population below the poverty line in the first model leads to a 0.021 percent increase in environmental degradation and in the second model to a 0.05 percent increase in carbon dioxide emissions. The reason for this difference in the coefficient in the case where the dependent variable is the ecological footprint and the estimate that per capita carbon dioxide emissions are the dependent variable may be that, given that the ecological footprint includes a wider range of pollutants and environmental destructors, some of the activities that lead to the production of these pollutants may have a different impact on poverty and the outcome of these effects may be different from the case where we only examine the per capita effect of carbon dioxide production.

کلیدواژه‌ها [English]

  • Keywords: Poverty
  • Environmental Degradation
  • Generalized Method of Moments (GMM)
  • Ecological Footprint
. منابع
اسداللهی، محمد؛ سیدنظری، مریم و راحلی، حسین. (1400). ارتباط فقر روستایی با تخریب محیط ‏زیست. نهمین اجلاس بین‌المللی کشاورزی، محیط زیست، توسعه شهری.‎
افقه، سیدمرتضی؛ اندایش،یعقوب؛ منصوری، سیدامین و خرم‌زاده، آذین. (1404). بررسی اثر فقر بر تخریب محیط زیست از مجاری کیفیت نهادی، مقررات بازدارنده و قیمت انرژی در استان‌های ایران با استفاده از الگوی داده‌های پانل فضایی. پژوهش‌ها و چشم‌اندازهای اقتصادی، (4)25، 227-256.
عزیزی، علی و پوراصغر سنگاچین، فرزام. (1401). بررسی رابطۀ فقر و شاخص عملکرد محیط ‌زیست در کشورهای با گروه درآمدی مختلف. جامعه‌شناسی کاربردی، (2)33، 117-136.
‎‎شریفی‌نیا، زهرا و مهدوی، مسعود. (1390). نقش فقر اجتماعی و اقتصاد روستایی بر تخریب محیط ‏زیست (مطالعه موردی: مرتع ممیزی‌شده شوررود، بخش شیب آب شهرستان زابل). پژوهش‌های ‏جغرافیای انسانی، 76‏‎، 67-84 .
References
Afghah, M., Andayesh, Y., Mansouri, A. and khoramzadeh, A. (2025). Investigating the Effect of Poverty on Environmental Degradation through Institutional Quality, Restrictive Regulations, and Energy Prices in Iranian Provinces Using a Spatial Panel Approach. Economic Research and Perspectives, 25(4), 227-256. [In Persian]
Ahn, S. C. and Schmidt, P. (1995). Efficency estimation of models for ‎dynamic ‎panel data. Journal of Econometrics, ‎‏68(1),‎‏ 5-28‏‎.‎
‎Anderson, T. W. and Hsiao, C. (1981). Efficient of dynamic models with ‎error ‎components. Journal of the American statistical Association,76(375), ‎‏598-606.‎
‎Arellano, M. and Bover, O. (1995). Another look at the instrumental ‎variable ‎estimation of error-components models. Journal of ‎Econometrics, ‎‏68(1), 29-51‏‎.‎
Asadollahi, M, Seyyednazari, M and Raheli, H. (2022). The Relationship between Rural Poverty and Enviroment Destruction. 9th International Conference on Agriculture, Enviroment, Urban and Rural Development. [In Persian]
Azizi, A. and Pourasghar Sangachin, F. (2022). Investigating the Relationship between Poverty and Environmental Performance Index (EPI) in Countries with Different Incomes. Journal of Applied Sociology, 33(2), 117-136. [In Persian]
‎Blundell, R. and Bond, S. (1998). Initial conditions and moment restrictions ‎in ‎dynamic panel data models. Journal of Econometrics, ‎‏87(1), 115-143‏‎.‎
‎Burki, M. A. K., Burki, U. and Najam, U. (2021). Environmental ‎degradation ‎and poverty: A bibliometric review. Regional ‎Sustainability, ‎‏2(4), 324-336‏‎.‎
‎Duraiappah, A. K. (1998). Poverty and environmental degradation: A ‎review ‎and analysis of the nexus. World Development, ‎‏26(12), ‎‏2169‏‎-‏2179‏‎.‎
‎Hilton, F. G. (2006). Poverty and pollution abatement: Evidence from ‎lead ‎phase-out. Ecological Economics, ‎‏56(1),‏ 125-131‏‎.‎
‎Hsiao, C., Pesaran, M. H. and Tahmiscioglu, A. K. (2002). Maximum ‎likelihood ‎estimation of fixed effects dynamic panel data models covering short ‎time ‎periods. Journal of Econometrics, ‎‏109(1), 107-150‏‎.‎
‎Kuznets, S. (1955). Economic growth and income inequality. The ‎American ‎Economic Review, ‎‏1-28‏‎.‎
‎Masron, T. A. and Subramaniam, Y. (2019). Does poverty cause ‎environmental ‎degradation? Evidence from developing countries. Journal of ‎Poverty, ‎‏23(1), ‎‏44‏‎-‎‏64‏‎.‎
‎Nayak, P. (2010). Poverty and environmental degradation in rural India: ‎A ‎nexus.‎
‎Rakshit B, Jain P, Sharma R, Bardhan S. (2023). An empirical investigation of the effects of poverty and urbanization on environmental degradation: the case of sub-Saharan Africa. Environ Sci Pollut Res Int.
‎Ravallion, M. (2015). The economics of poverty: History, measurement, ‎and ‎policy. Oxford University Press.‎
‎Ravallion, M., Chen, S. and Sangraula, P. (2009). Dollar a day revisited. ‎The ‎World Bank Economic Review, ‎‏23(2), 163-‎‏184‏‎.‎
‎Ravallion, M., Datt, G. and Van de Walle, D. (1991). Quantifying ‎absolute ‎poverty in the developing world. Review of Income and ‎Wealth, ‎‏37(4), ‎‏345‏‎-361‏‎.
‎Rizk, R. and Slimane, M. B. (2018). Modelling the relationship between ‎poverty, ‎environment, and institutions: A panel data study. Environmental ‎Science and ‎Pollution Research, ‎‏25(31), ‎‏31459‏‎-‎‏31473‏‎.‎
‎Sadati, A., Asadi, A., Akbari, M., Fami, H. S., Iravani, H. and Rostami, F. (2008). ‎Poverty alleviation and sustainable development: The role of social ‎capital. ‎Journal of Social Sciences, ‎‏4(3), 202‏‎-‏215.
Sharifinia, Z. and Mahdavi, M. (2011). The Role of Social and Rural Economic Poverty in the Enviroment Destruction (Case Study: The Surveyed Pasture of Shoorrood in Shibab District of Zabol Township). Human Geography Research, 76, 67-84. [In Persian]
‎World Bank. (1992). World development report ‎‏1992‏‎: Development and ‎the ‎environment. Washington, D.C.: World Bank Group.‎