طراحی یک دستگاه صرفه‌جویی در مصرف آب، برای تنظیم بهینۀ دمای شیرهای آب

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی طراحی صنعتی، دانشگاه غیرانتفاعی کمال‌الملک، مازندران، ایران.

2 کارشناسی ارشد بیوتکنولوژی صنعت و محیط‌زیست، دانشگاه تهران، تهران، ایران.

3 مربی مهندسی عمران ـ سازه، دانشگاه آزاد اسلامی واحد چالوس، مازندران، ایران.

چکیده

این پژوهش نظری به معرفی و طراحی مفهومی یک سامانه مکانیکی و مقرون‌به‌صرفه برای کاهش مصرف آب و انرژی در شیرآلات می‌پردازد. سازوکار پیشنهادی مبتنی بر یک شیر ترموستاتیک تمام‌مکانیکی است که با بهره‌گیری از عناصر حساس به دما نظیر بی‌متال یا موم گرمایی، جریان آب را تا رسیدن به دمای مطلوب متوقف می‌سازد. این ویژگی باعث می‌شود که در زمان انتظار برای خروج آب با دمای مناسب، از هدررفت قابل توجه آب و انرژی جلوگیری گردد. براساس برآوردها، این سامانه قادر است حدود ۶۵ درصد از آب مصرفی بیهوده و نزدیک به ۴۰ درصد از انرژی مورد نیاز برای گرمایش آب را کاهش دهد. مزیت کلیدی این طرح در سادگی ساختار، عدم نیاز به برق یا تجهیزات الکترونیکی پیچیده و هزینه پایین تولید نهفته است؛ عواملی که امکان استفاده گسترده آن را در ساختمان‌های مسکونی، هتل‌ها، مراکز عمومی و حتی مناطق محروم فراهم می‌کند. نتایج حاصل نشان می‌دهد که این فناوری علاوه بر بهبود بهره‌وری منابع، می‌تواند به‌عنوان راهکاری عملی و پایدار در مدیریت آب و انرژی مورد استفاده قرار گیرد و گامی مؤثر در راستای تحقق اهداف توسعه پایدار محسوب شود.

کلیدواژه‌ها


عنوان مقاله [English]

Designing a Water-Saving Device for Optimal Tap Temperature Adjustment

نویسندگان [English]

  • Saleh Karimi Douna 1
  • Bahareh Karimi Douna 2
  • Mohsen Ghomi 3
1 Bachelor of Industrial Design, Kamal Al-Molk University, Mazandaran, Iran.
2 Master of Industrial and Environmental Biotechnology, University of Tehran, Tehran, Iran.
3 Instructor, Structural Engineering, Islamic Azad University, Chalous Branch, Mazandaran, Iran.
چکیده [English]

Abstract
Introduction
Water and energy conservation represent two of the most critical challenges of our time. In conventional plumbing systems, substantial amounts of water and energy are wasted daily as users wait for tap water to reach the desired temperature. This theoretical research introduces a conceptual design for an intelligent, purely mechanical, and cost-effective system that can be integrated into faucets to eliminate such waste. The proposed device seeks to address this global issue by preventing water from flowing until it reaches a pre-set temperature, thus contributing to sustainable development goals through improved resource efficiency.
Methodology and Conceptual Design
This study is grounded in a theoretical and conceptual design approach. At the core of the proposed system is a mechanical thermostatic valve that operates entirely without electricity or electronic circuitry, relying instead on temperature-sensitive components such as bimetallic strips or thermal wax.
Operating Principle
The valve automatically blocks water flow when the water temperature deviates from the user-defined setting (adjustable between 15 °C and 60 °C). Once the water in the pipes reaches the desired temperature, the thermal actuator opens the valve, allowing water to flow. This “intelligent waiting” mechanism ensures that no water is wasted during the temperature-adjustment phase.
 
 
Dual-Mode Functionality
A key innovation is the inclusion of a mechanical mode selector for “Hot Water” or “Cold Water” demand. In cold mode, a secondary mechanism diverts the initial warm water present in the pipes into a storage tank for non-potable reuse (e.g., plant irrigation), providing users with immediate access to cold water from the main supply and effectively eliminating waste.
Key Technical Specification
The design incorporates ±1.5 °C temperature accuracy, a durable brass body with chrome plating, and standard dimensions to allow seamless installation and compatibility with conventional faucet systems.
Results and Conclusion
The conceptual analysis and theoretical estimates indicate that the system offers a highly effective solution for integrated water and energy management.
Efficiency
The device is projected to save up to 65% of the water typically wasted while waiting for temperature adjustment and approximately 40% of the energy consumed in heating water.
Economic Viability
Cost-benefit analysis reveals a low initial investment, a payback period of fewer than eight months, and an impressive Internal Rate of Return (IRR) of 158% for household users, making the design an economically compelling solution.
Advantages and Impact
The main strengths of the system lie in its structural simplicity, low production cost, durability, and complete independence from electrical power. These features make it suitable for widespread deployment in residential buildings, hotels, public facilities, and underserved communities.
Conclusion
In summary, this mechanical thermostatic valve presents a practical, sustainable, and economically viable technology for significant water and energy conservation, offering meaningful contributions toward achieving global sustainable development objectives.
 

کلیدواژه‌ها [English]

  • Keywords: Thermostatic valve
  • water conservation
  • energy management
  • consumption optimization
  • sustainable development
انصاری سامانی، ح؛ دالوندی، ح؛ دالوندی، س و دالوندی، م. (۱۴۰۲). اثر متقابل درآمد و نابرابری درآمد با آلودگی محیط ‌زیست در استان‌های ایران. فصلنامه اقتصاد محیط‌زیست و منابع طبیعی، 4(۸)، ۷۵-۱۰۱. http://dx.doi.org/10.22054/EENR.2024.72902.178
چشم‌اغیل، م؛ شهرکی، ج و اشرف گنجویی، ر. (۱۴۰۴). تأثیر عدم قطعیت نرخ شهرنشینی و مصرف انرژی برق‌آبی بر ردپای اکولوژیکی در ایران. فصلنامه اقتصاد محیط‌زیست و منابع طبیعی، 4(10)، 91-122. https://doi.org/10.22054/eenr.2025.83526.198
موسوی، سیدحسین و کشوری، عبدالرحمن. (1398)، تأثیر هوشمندسازی تأسیسات آبی شهرک‌های مسکونی بر کاهش مصرف آب (مطالعه موردی پروژه شهرک شهید خرازی)، دومین کنفرانس بین‌المللی معماری، عمران، کشاورزی و محیط‌زیست، https://civilica.com/doc/899893
References
Agarwal, S., Araral, E., Fan, M., Qin, Y., & Zheng, H. (2022). Water conservation through plumbing and nudging. Nature Human Behaviour, 6(6), 858-867. 10.1038/s41562-022-01320-y
Ali, G. A., Chong, K. F., & Makhlouf, A. S. H. (Eds.). (2024). Handbook of nanosensors: materials and technological applications. Springer Nature.
Aly, M., & Tayyar, H. (2023). Developing a Smart Coffee Dispensing Machine. https://doi.org/10.58014/aubh.23674503.v2
Alsalemi, A., Himeur, Y., Bensaali, F., & Amira, A. (2020). Appliance-level monitoring with micro-moment smart plugs. In The Proceedings of the Third International Conference on Smart City Applications, 942-953. Springer International Publishing. https://doi.org/10.48550/arXiv.2012. 05787
Ansari Samani, H., Dalvandi, H., Dalvandi, S., & Dalvandi, M. (2023). The reciprocal effect of income and income inequality with environmental pollution in Iranian provinces. Journal of Environment and Natural Resources, 4(8), 75-101. http://dx.doi.org/10.22054/EENR.2024.72902. 178 [In Persian]
Brazeau, R. H., & Edwards, M. A. (2013). Optimization of electric hot water recirculation systems for comfort, energy and public health. Journal of Green Building, 8(2), 73-89. https://doi.org/10.3992/jgb.8.2.73
BUILD UP. (2025). Energy efficiency in building systems: Annual report 2025. European Commission.
Cheshmaghyl, M., Shahrki, J., & Ashraf Ganjavi, R. (2025). The impact of urbanization rate uncertainty and hydropower energy consumption on ecological footprint in Iran. Journal of Environment and Natural Resources.4(10), 91-122. https://doi.org/10.22054/eenr.2025.83526.198 [In Persian]
Esmaeilishirazifard, N., Ekhtiari, M., Nikkar, M., & Fattahi, K. (2024). Investigating the impact of technical, economic and social behavioral saving strategies on domestic water-saving consumption patterns in Shiraz. Cleaner and Responsible Consumption, 12, 100167. https://doi.org/10.1016/j.clrc.2024.100167
Feng, P. P., Chen, Z. L., & Tang, M. J. (2023). Design And research Of Thermostatic Faucet Detection Device. 3rd International Conference on Electrical Engineering and Mechatronics Technology (ICEEMT), 655-658. https://doi.org/10.1109/ICEEMT59522.2023.10263030
Fidar, A. M.; Memon, F. A.; Butler, D. (2016). Performance evaluation of conventional and water saving taps. Science of the Total Environment, 541, 815–824. https://doi.org/10.1016/j.scitotenv.2015.08.024
Gajendiran, M., Jagdeesh, S. K., Gurunathraj, E., Ramanathan, B. H., Akhshai, C., & Gowtham, V. (2025). PCM incorporated with nanoparticles as thermostat materials for cooling IC engines. In Hybrid and Advanced Technologies (pp. 444-450). CRC Press.
Hao, Z., Rogers, T., & Li, F. (2024). Review on research of uncertain dynamics for bimetallic structures. In International Conference on Optoelectronic Information and Functional Materials (OIFM), (13183), 235-244. https://doi.org/10.1117/12.3033873
Hofer, G., Kotik, J., & Proell, T. (2023). Heat loss reduction and tap temperature equalization of a centralized domestic hot water system in a modernized pre-WWI residential building. Journal of Building Engineering, 77, 107506. https://doi.org/10.1016/j.jobe.2023.107506
Hongxia, F., & Qiaolin, L. (2025). Design and application of intelligent water-saving system in water-saving management of urban water-using units. PLOS Water, 4(4), e0000355. https://doi.org/10.1371/journal. pwat.0000355
Hossain, S., & Abdelgawad, A. (2025). Low-cost architecture for an advanced smart shower system using internet of things platform. Journal of Smart Cities and Society, 4(1), 3-17. https://arxiv.org/abs/2311.07712
Ip, K., She, K., & Adeyeye, K. (2018). Life-cycle impacts of shower water waste heat recovery: case study of an installation at a university sport facility in the UK. Environmental Science and Pollution Research, 25(20), 19247-19258. https://doi.org/10.1007/s11356-017-0409-0
Chidananda, H., Hamsini, P., Geetha Sri Jaya, C. H., Sahana, D., & Galibhe Neeraja. (2024). Design and Implementation of Sensor-Integrated Gesture-Controlled Smart Water Tap. Grenze International Journal of Engineering & Technology, 10(2), 5240. ISSN: 2395-5287
Kumar, R., & Saxena, A. (2024). Smart Water Management and Resource Conservation. In Sustainable Smart Cities and the Future of Urban Development (pp. 235-262). IGI Global Scientific Publishing. 10.4018/979-8-3693-6740-7.ch010
Lalithmohan, S., Kavinprabhu, L., Jayaseelan, T., & Kumar, V. N. (2020). Design a Smart Faucet for Reducing the Water Wastage using IoT. International Journal of Recent Technology and Engineering (IJRTE), 8(6), 2277-387. 10.35940/ijrte.F7812.038620
Liu, Y., Zhang, Q., & Brown, K. (2024). Energy saving potentials in domestic water heating systems. Energy and Buildings, 285, 112-125. https://doi.org/10.1016/j.enbuild.2024.112125
Morkunaite, L., Pupeikis, D., Tsalikidis, N., Ivaskevicius, M., Manhanga, F. C., Cerneckiene, J., ... & Fokaides, P. (2025). Efficiency in Building energy use: Pattern discovery and crisis identification in hot-water consumption data. Energy and Buildings, 336, 115579. https://doi.org/ 10.1016/j.enbuild.2025.115579
Mousavi, S. H., & Keshvari, A. (2019). The impact of smartening water installations in residential complexes on reducing water consumption (Case study: Shahid Kharrazi Complex). Second International Conference on Architecture, Civil Engineering, Agriculture and Environment. https://civilica.com/doc/899893 [In Persian].
Naveenkumar, R., Sarkar, R., Kumar, N., & Yaduvanshi, N. (2024). Integrating Automatic Water Shut-Off Valves, Leak Detection Systems, and Smart Irrigation for Enhancing Efficiency and Conservation in Modern Water Management systems using IoT. International Journal of Innovative Research in Technology, 11(6), 1163-1169. https://ijirt.org/publishedpaper/IJIRT168998_PAPER.pdf
Nuwarapaksha, T. D., Udumann, S. S., Dissanayaka, N. S., Dilshan, R. M. N., & Atapattu, A. J. (2025). Revolutionizing Agriculture by Advanced Water and Irrigation Management Technologies. In Emerging Trends and Technologies in Water Management and Conservation (pp. 285-318). IGI Global Scientific Publishing. 10.4018/979-8-3693-6920-3.ch009
Peffer, T., Pritoni, M., Meier, A., Aragon, C., & Perry, D. (2011). How people use thermostats in homes: A review. Building and Environment, 46(12), 2529-2541. https://doi.org/10.1016/j.buildenv.2011.05.027
Rahmadini, V. F., Ma'arif, A., & Abu, N. S. (2023). Design of water heater temperature control system using PID control. Control Systems and Optimization Letters, 1(2), 111-117
Shemer, H., Wald, S., & Semiat, R. (2023). Challenges and solutions for global water scarcity. Membranes, 13(6), 612. https://doi.org/10.3390/ membranes13060612
Stec, A. (2020). Sustainable Water management in buildings. Water Science and Technology Library, 90. https://doi.org/10.1007/978-3-030-35959-1
Sun, Y., Li, X., Wei, W., Xue, H., Wang, W., & Deng, S. (2022). Development of a variable water temperature control method for air source heat pump based on the supply–demand balance. Sustainable Energy Technologies and Assessments, 52, 102366. https://doi.org/ 10.1016/j.seta.2022.102366
Varadarajan, M. N., Vinya, V. L., Prabhu, R. J., Swathi, G., Mohankumar, N., & Velmurugan, S. (2024). Smart Water Taps Using IoT Sensors and Deep Reinforcement Learning for Personalized Consumption Control. In 2024 6th International Conference on Energy, Power and Environment (ICEPE) (pp. 1-6). IEEE. https://doi.org/10.1109/ICEPE63236.2024. 10668912
Yang, H. C., Zhu, X. J., Liu, Y. H., & Chen, X. Z. (2025). How terrorist attacks reshape global energy efficiency: Evidence from a global panel of 68 countries. Environment, Innovation and Management, 1, 2550001. https://doi.org/10.1142/S3060901125500012
Zulkifli, C. Z., Garfan, S., Talal, M., Alamoodi, A. H., Alamleh, A., Ahmaro, I. Y., ... & Chiang, H. H. (2022). IoT-based water monitoring systems: a systematic review. Water, 14(22), 3621, 1-29. https://doi.org/10. 3390/w14223621