ارزیابی ادراکات دانشجویان از اثرات زیان‌بار میکروپلاستیک‌ها به منظور تقویت آگاهی زیست‌محیطی: رویکرد مبتنی بر شبکه‌ عصبی مصنوعی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری گروه مدیریت صنعتی، دانشگاه خلیج فارس، بوشهر، ایران.

2 استاد گروه مدیریت صنعتی، دانشکده مدیریت و کسب‌وکار، دانشگاه خلیج فارس، بوشهر، ایران.

چکیده

این پژوهش با هدف سنجش سطح آگاهی زیست‌محیطی دانشجویان دانشگاه خلیج‌فارس نسبت به تهدیدات ناشی از ریزپلاستیک‌ها انجام شده است. تمرکز اصلی بر بررسی نقش آموزش دانشگاهی در ارتقای ادراک و رفتارهای زیست‌محیطی مرتبط با مصرف بی‌رویه پلاستیک، به‌ویژه کیسه‌های یک‌بارمصرف، بوده است. مطالعه با رویکرد توسعه‌ای-کاربردی و روش توصیفی-پیمایشی، بر اساس داده‌های ۴۰۸ پرسشنامه معتبر از میان ۴۵۰ نمونه تصادفی ساده از جامعه ۴۰۰۰ نفری دانشجویان در مقاطع مختلف انجام شد. ابزار گردآوری داده‌ها، پرسشنامه‌ای محقق‌ساخته با ۲۳ سؤال بود که با استفاده از شبکه عصبی مصنوعی تحلیل شد. نتایج نشان داد که آموزش دانشگاهی تأثیر ۹۹ درصدی در بازدارندگی رفتاری، ۴۴.۹ درصدی در کاهش شکاف‌های آگاهی، ۵۷.۴ درصدی در تقویت مقررات بازدارنده و ۷۷.۲ درصدی در کنترل‌های آبی دارد. همچنین، سطح تحصیلات با افزایش آگاهی زیست‌محیطی رابطه مستقیم دارد. تحلیل پاسخ‌های سؤال باز نشان داد که زنان بیشتر به آلودگی غذاهای دریایی اشاره کرده‌اند، در حالی‌که مردان تمرکز بیشتری بر آلودگی ناشی از بطری‌های آب و لباس‌های مصنوعی داشته‌اند. این تفاوت‌های جنسیتی، ضرورت طراحی آموزش‌های هدفمند را برجسته می‌سازد. پژوهش بر اهمیت توسعه فرهنگی، وضع قوانین بازدارنده و اجرای کمپین‌های اطلاع‌رسانی عمومی برای کاهش مصرف پلاستیک و جایگزینی بسته‌بندی‌های پایدار تأکید دارد. یافته‌ها الگویی برای سیاست‌گذاری منطقه‌ای در مدیریت پایدار آلودگی میکروپلاستیکی در خلیج‌فارس ارائه می‌دهند.

کلیدواژه‌ها


عنوان مقاله [English]

Assessing Students’ Perceptions of Microplastic Hazards to Advance Environmental Awareness: An Artificial Neural Network Approach

نویسندگان [English]

  • Mojgan Hasanpour 1
  • Hamid Shahbandarzadeh 2
1 PhD Student in Industrial Management, Faculty of Business and Economics, Persian Gulf University, Bushehr, Iran.
2 Professor of Industrial Management, Faculty of Business and Economics, Persian Gulf University, Bushehr, Iran.
چکیده [English]

Abstract
Introduction
Microplastics (MPs)—plastic particles smaller than 5 mm—are pervasive pollutants that threaten ecosystems and human health across terrestrial, aquatic, and atmospheric environments. By 2015, global plastic production had reached 6,300 million tons, of which only 9% was recycled, and projections indicate that plastics will account for 20% of global oil consumption by 2050. In the Persian Gulf—a semi-enclosed sea—anthropogenic activities such as oil extraction, industrialization, and coastal development contribute between 155,000 and 413,000 tons of plastic waste annually. MPs infiltrate food chains, induce toxicity, and pose considerable health risks; humans are estimated to ingest between 39,000 and 74,000 microplastic particles each year. The widespread use of single-use plastics, coupled with inadequate waste management systems, has further intensified this pollution crisis. Environmental education, informed by theoretical frameworks such as social identity theory and experiential learning, plays a pivotal role in fostering sustainable behaviors. In Bushehr, urban runoff and maritime activities further exacerbate MP contamination. Although global research increasingly explores strategies for reducing plastic pollution, port-specific sustainability initiatives and educational interventions remain insufficiently addressed in the Middle East.
The novelty of this study lies in applying an artificial neural network (ANN) to assess and rank microplastic awareness among students at Persian Gulf University, thereby integrating machine learning with educational strategies to propose actionable, context-specific solutions for MP mitigation. The research contributes by identifying education-driven dimensions of awareness and offering policy recommendations tailored to the Persian Gulf region.
 
Methodology
This quantitative, developmental-applied study employed a descriptive-survey design to evaluate MP awareness among Persian Gulf University students during 2024–2025. The target population included 4,000 students across bachelors, masters, and PhD levels. A simple random sample of 450 participants was selected using Cochran’s formula (95% confidence level; 5% margin of error), yielding 408 valid responses (195 female, 213 male; 228 undergraduate, 153 master’s, 27 PhD), and representing a 90.67% response rate. Inclusion criteria required active enrollment and accessibility.
Data collection utilized a researcher-developed questionnaire containing 23 items: 22 closed-ended questions on a 5-point Likert scale measuring awareness, attitudes, and behaviors related to MP reduction, and one open-ended question identifying perceived sources of pollution (e.g., seafood, water bottles). Content validity was confirmed by five experts in environmental science and sustainability, and internal consistency reliability was high (Cronbach’s α = 0.87). Data were analyzed using a three-layer ANN (input, hidden, output) with softmax activation and a cross-entropy loss function. Variables were normalized using (x − min)/(x − max) and divided into training (70.1%, n = 282), testing (29.4%, n = 120), and holdout (1.5%, n = 6) sets. Independent variables included demographic characteristics (gender, age, education level, prior experience) and six thematic dimensions: toxicity awareness, environmental damage, degradation deterrents, regulatory strengthening, aquatic controls, and knowledge promotion. The ANN model ranked variable importance and predicted perceptions of MP-related hazards.
Results and Discussion
The ANN demonstrated strong performance, achieving cross-entropy errors of 0.1% (training), 0.05% (testing), and 0.05% (holdout) after five-fold cross-validation, with overfitting mitigated through L2 regularization and early stopping. Classification accuracy reached 95.2% for the training dataset and 94.8% for the holdout dataset, with sensitivities of 96.5% for non-hazardous and 95.6% for hazardous MP perceptions. Cumulative gains analysis showed that 40% of the dataset accounted for 62% of high-risk cases, with 100% hazard detection obtained beyond the 68th percentile.
Key predictive variables included awareness of environmental damage, livestock ingestion, soil toxicity, cancer risks, non-recyclability, and toxic production processes—each significantly moderated by education level. Open-ended responses revealed gender-based differences: female respondents emphasized seafood contamination, whereas male participants highlighted water bottles and synthetic clothing as major sources. Six core dimensions emerged from the analysis: (1) toxicity awareness (99% education-driven deterrence), (2) environmental damage, (3) degradation deterrents, (4) regulatory strengthening (57.4% education-linked), (5) aquatic controls (77.2% education-linked), and (6) awareness gaps (44.9% education-linked).
These findings align with previous research on MP toxicity, ecosystem disruption, aquaculture threats, and deficits in public awareness. The pronounced role of education in behavioral deterrence underscores the importance of integrated policy-education strategies. The observed gender differences further suggest the relevance of tailored educational messaging to enhance the effectiveness of MP reduction interventions.
Conclusions
This study confirms that university-level education significantly enhances microplastic awareness, identifying six key dimensions through ANN-based analysis. It directly answers the research question regarding education’s influence on MP awareness, revealing its substantial impact—particularly a 99% association with deterrence behaviors and a 44.9% contribution to reducing awareness gaps. Gender-specific concerns highlight the need for differentiated communication strategies. Practical recommendations include implementing targeted educational programs, enforcing stricter regulations, and providing incentives to reduce plastic consumption—interventions that offer co-benefits for aquaculture, tourism, and public health. The study’s significance lies in its innovative use of machine learning and its region-specific focus, offering a transferable model for sustainable microplastic management in the Persian Gulf. Future research should extend to broader demographic groups and adopt longitudinal approaches to evaluate the durability of educational impacts.
 

کلیدواژه‌ها [English]

  • Keywords: Plastic pollution
  • microplastics
  • environmental awareness
  • university students
  • Persian Gulf
احمدی، یعقوب؛ مرادی، سالار و حکیمی‌نیا، بهزاد. (1403). شناسایی و تحلیل تهدیدات و فرصت‌های برآمده از پیشران‌های فرهنگ زیست‌محیطی در حوزه اجتماعی و فرهنگی. فصلنامه اقتصاد محیط زیست و منابع طبیعی، 4(9)، 5-57.
اخباری‌زاده، رازقه؛ نبی‌پور و دوبرادران، سینا. (2022). میکروپلاستیک‌ها در خلیج‌فارس. مجله طب جنوب، 25(2)، 179-197. http://ismj.bpums.ac.ir/article-1-1617-fa.html
ایزدی، پارسه. (2024). بررسی ارتباط بین صادرات محصولات پتروشیمی و آلودگی محیط زیست. فصلنامه اقتصاد محیط زیست و منابع طبیعی، 4(9)، 59-83.
دهقانی، سمانه و یونسیان، مسعود. (2024). میکروپلاستیک و سلامت انسان: درک خطرات و پیامدها. 19(4)، 341-346. http://irje.tums.ac.ir/article-1-7322-fa.html
هاشم‌پور، یلدا؛ جباری، کوهی و کوثر، فندرسکی. (2024). معرفی روش‌های آماری جهت تعیین منابع میکروپلاستیک‌ها در محیط‌های آبی؛ مطالعة مروری. مجله تحقیقات سلامت در جامعه، 9(4)، 111-120. http://jhc.mazums.ac.ir/article-1-923-fa.html
References
Al-Tarshi, M., Dobretsov, S., and Gallardo, W. (2024). Marine litter and microplastic pollution in mangrove sediments in the Sea of Oman, Marine Pollution Bulletin, 201(February), p. 116132. https://doi.org/ 10.1016/j.marpolbul.2024.116132.
Ahmadi, Y, Moradi, S, Hakiminya, B. (2024). Identifying and Analyzing Threats and Opportunities Arising from the Drivers of Environmental Culture in the Social and Cultural Spheres. Journal of Environmental and Natural Resource Economics. 4(9), 5-57. http://dx.doi.org/10.22054/ EENR.2025.82654.193 [In Persian].
Akhbarizadeh, R, Nabipour, I, Dobaradaran, S. (2022). Microplastics in the Persian Gulf. Iran South Med J. 25 (2) :179-197. http://ismj.bpums. ac.ir/article-1-1617-fa.html. [In Persian].
Barceló, D. (2024). Microplastics in the environment: analytical chemistry methods, sorption materials, risks and sustainable solutions, Analytical and Bioanalytical Chemistry, 416(15), 3479-3485. https://doi.org/10. 1007/s00216-024-05319-4.
Barceló, D., Picó, Y., and Alfarhan, A.H. (2023). Microplastics: Detection in human samples, cell line studies, and health impacts, Environmental Toxicology and Pharmacology, 101(June). https://doi.org/10.1016/j.etap. 2023.104204.
Bayhan, B. and Uncumusaoglu, A.A. (2024). Abundance, characteristics, and potential ecological risks of microplastics in some commercial fish in İzmir Bay (Aegean Sea, Türkiye), Regional Studies in Marine Science, 73(October), 103488. https://doi.org/10.1016/j.rsma.2024.103488.
Behmanesh, M., Chamani, A., & Chavoshi, E. (2023). Sedimentary abundance and major determinants of river microplastic contamination in the central arid part of Iran. Applied Water Science, 13(12), 239. https://doi.org/10.1007/s13201-023-02038-6.
Bouadil, O., Benomar, M., El Ouarghi, H., Aboulhassan, M. A., & Benbrahim, S. (2024). Identification and quantification of microplastics in surface water of a southwestern Mediterranean Bay (Al Hoceima, Morocco). Waste Management Bulletin, 2(1), 142-151.‏ https://doi.org/ 10.1016/j.wmb.2024.01.003.
Cole, M., Gomiero, A., Jaén-Gil, A., Haave, M., & Lusher, A. (2024). Microplastic and PTFE contamination of food from cookware. Science of the Total Environment, 929, 172577.‏ https://doi.org/10.1016/j.scitotenv. 2024.172577.
Dai, Z., Zhang, H., Zhou, Q., Tian, Y., Chen, T., Tu, C., ... & Luo, Y. (2018). Occurrence of microplastics in the water column and sediment in an inland sea affected by intensive anthropogenic activities. Environmental pollution, 242, 1557-1565.‏ https://doi.org/10.1016/ J.ENVPOL.2018.07.131.
Das, T. (2022). Emergence of Plastic as a Pollutant (pp. 1–5). Springer eBooks. https://doi.org/10.1007/978-3-031-10729-0_1.
Dehghani, S, Yunesian, M. (2024). Microplastics and Human Health: Perception of Risks and Consequences. Irje, 19 (4), 341-346. http://irje.tums.ac.ir/article-1-7322-fa.html. [In Persian].
Frantzi, S., Brouwer, R., Watkins, E., van Beukering, P., Cunha, M. C., Dijkstra, H., ... & Triantaphyllidis, G. (2021). Adoption and diffusion of marine litter clean-up technologies across European seas: Legal, institutional and financial drivers and barriers. Marine Pollution Bulletin, 170, 112611.‏ https://doi.org/10.1016/J.MARPOLBUL.2021.112611.
Garbounis, G., Karasali, H. and Komilis, D. (2022). A Life Cycle Analysis to Optimally Manage Wasted Plastic Pesticide Containers, Sustainability (Switzerland), 14(14). https://doi.org/10.3390/su14148405.
García-Morales, J., Cervantes-Bobadilla, M., Hernández-Pérez, J. A., Saavedra-Benítez, Y. I., Adam-Medina, M., & Guerrero-Ramírez, G. V. (2022). Inverse artificial neural network control design for a double tube heat exchanger. Case Studies in Thermal Engineering, 34, 102075. https://doi.org/10.1016/J.CSITE.2022.102075.
Hajiouni, S., Mohammadi, A., Ramavandi, B., Arfaeinia, H., De-la-Torre, G. E., Tekle-Röttering, A., & Dobaradaran, S. (2022). Occurrence of microplastics and phthalate esters in urban runoff: a focus on the Persian Gulf coastline. Science of the Total Environment, 806, 150559.‏ https://doi.org/10.1016/J.SCITOTENV.2021.150559.
Hashempour, Y, Jabari, A, kouhi, K, Fendereski, A. (2024) Introducing Statistical Methods to Identify the Sources of Microplastics in the Aquatic Environment: An Overview. J Health Res Commun. 9 (4), 111-120. http://jhc.mazums.ac.ir/article-1-923-fa.html. [In Persian].
Idowu, G. A., Oriji, A. Y., Olorunfemi, K. O., Sunday, M. O., Sogbanmu, T. O., Bodunwa, O. K., ... & Aiyesanmi, A. F. (2024). Why Nigeria should ban single-use plastics: Excessive microplastic pollution of the water, sediments and fish species in Osun River, Nigeria. Journal of Hazardous Materials Advances, 13, 100409.‏ https://doi.org/10.1016/j.hazadv.2024. 100409.
Islam, F. S. (2025). The Effects of Plastic and Microplastic Waste on the Marine Environment and the Ocean. European Journal of Environment and Earth Sciences, 6(3), 1-9. https://doi.org/10.24018/ejgeo.2025. 6.3. 508.
Izadi, H. R., Parseh, Z. (2024). Investigating The Relationship Between Export of Petrochemical Products and Environmental Pollution in The Climatic Field of Iran. Journal of Environmental and Natural Resource Economics. 4(9), 59-83. http://dx.doi.org/10.22054/EENR.2025.81348. 189. [In Persian].
Jayasinghe, R. R., Abeyrathna, W. P., Hendawitharana, M. P., Liyanage, C. L., Williams, K. S., & Halwatura, R. U. (2024). Overcoming policy gaps for effective plastic waste management: A case study of Dikkowita Fishery Harbour, Sri Lanka. Marine Policy, 161, 106028. https://doi.org/10.1016/J.MARPOL.2024.106028.
khan, U. (2023). Plastic Pollution: Understanding the Global Threat and Countermeasures. Journal of Biosensors and Bioelectronics Research, 1–2. https://doi.org/10.47363/jbber/2023(1)104.
Lai, W., Kuang, M., Wang, X. et al. Skin cancer diagnosis (SCD) using Artificial Neural Network (ANN) and Improved Gray Wolf Optimization (IGWO). Sci Rep 13, 19377 (2023). https://doi.org/10.1038/s41598-023-45039-w
Liu, G. and Lisak, G. (2023). Inherently separated syngas production from plastic waste fast pyrolysis integrated with volatile chemical looping conversion with CO2 splitting, Chemical Engineering Journal, 465(February), 142915. https://doi.org/10.1016/j.cej.2023.142915.
Liu, P., Shao, L., Guo, Z., Zhang, Y., Cao, Y., Ma, X., & Morawska, L. (2025). Physicochemical characteristics of airborne microplastics of a typical coastal city in the Yangtze River Delta Region, China. Journal of Environmental Sciences, 148, 602-613.‏ https://doi.org/10.1016/ J.JES.2023.09.027.
López-Jiménez, L. (2023). La conciencia ambiental desde la educación y la gestión: fundamentos teóricos. 3(2), 5-12. https://doi.org/10.58594/rtest. v3i2.70.
Mursid, A., Fehabutar, D., Wulandari, D., & Hidaayatullaah, H. N. (2021). The Research Agenda of Green Education in Enhancing Environmental Concern and Green Consumption. 2(1), 1–4. https://doi.org/10.46627/ SILET.V2I1.60.
Noorimotlagh, Z., Hopke, P.K. and Mirzaee, S.A. (2024). A systematic review of airborne microplastics emissions as emerging contaminants in outdoor and indoor air environments, Emerging Contaminants, 10(4), 100372. https://doi.org/10.1016/j.emcon.2024.100372.
Pastorino, P. and Barceló, D. (2023). Microplastics and their environmental effects, Environmental Toxicology and Pharmacology, 104, 104324. https://doi.org/10.1016/J.ETAP.2023.104324.
Reshadi, M. A. M., Rezanezhad, F., Shahvaran, A. R., Ghajari, A., Kaykhosravi, S., Slowinski, S., & Van Cappellen, P. (2025). Assessment of environmental and socioeconomic drivers of urban stormwater microplastics using machine learning. Scientific reports, 15(1), 6299.‌ https://doi.org/10.1038/s41598-025-90612-0.
Razaviarani, V., Saudagar, A., Gallage, S., Shrinath, S., & Arab, G. (2024). Comprehensive investigation on microplastics from source to sink. Clean Technologies and Environmental Policy, 26(6), 1755-1782.‏ https://doi.org/ 10.1007/s10098-024-02738-w
Sharma, P. and Vidyarthi, V.K. (2024). Impact of microplastic intake via poultry products: Environmental toxicity and human health, Journal of Hazardous Materials Advances, 14(February), 100426. https://doi.org/10. 1016/j.hazadv.2024.100426.
Stöfen-O'Brien, A., Naji, A., Brooks, A. L., Jambeck, J. R., & Khan, F. R. (2022). Marine plastic debris in the Arabian/Persian Gulf: Challenges, opportunities and recommendations from a transdisciplinary perspective. Marine Policy, 136, 104909. https://doi.org/10.1016/J.MARPOL.2021. 104909.
Sun, X., Yang, R., Ji, J., Zhu, Z., White, J. C., & Shen, Y. (2024). An evaluation of microplastic contamination in the marine waters and species in the coastal region of the South Yellow Sea, China. Journal of Hazardous Materials, 469, 134018.‏ https://doi.org/10.1016/j.jhazmat. 2024.134018.
Varkey, P.S., Walker, T.R. and Saunders, S.J. (2021). Identifying barriers to reducing single-use plastic use in a coastal metropolitan city in Canada, Ocean & Coastal Management, 210, 105663. https://doi.org/ 10.1016/J.OCECOAMAN.2021.105663.
Vega Granda, R. A., Bazurto Rodríguez, I. M., & Jaramillo Palacios, G. P. (2023). El Constructivismo en entornos virtuales y su aplicación en los estudiantes. Propuestas Educativas. https://doi.org/10.61287/ propuestaseducativas.v5i19.2.
Wang, Z., He, H., Zhai, Y., Xu, Z., Chen, Y., & Liu, X. (2025). Photoaging processes and mechanisms of polyolefin microplastics. Separation and Purification Technology, 353, 128314.‏ https://doi.org/10.1016/J.SEPPUR. 2024.128314.
Willis, K.A. et al. (2022). Cleaner seas: reducing marine pollution, Reviews in Fish Biology and Fisheries, 32(1), 145-160. https://doi.org/10.1007/ s11160-021-09674-8.
Xiong, W., Hu, M., He, S., Ye, Y., Xiang, Y., Peng, H., ... & Peng, S. (2025). Microplastics enhance the adsorption capacity of zinc oxide nanoparticles: Interactive mechanisms and influence factors. Journal of Environmental Sciences, 147, 665-676.‏ https://doi.org/10.1016/J.JES. 2023.12.017.
Yang, J., Peng, Z., Sun, J., Chen, Z., Niu, X., Xu, H., ... & Shen, Z. (2024). A review on advancements in atmospheric microplastics research: The pivotal role of machine learning. Science of the Total Environment, 945, 173966. https://doi.org/10.1016/j.scitotenv.2024.173966.
Zacharis, N. (2016) ‘Predicting Student Academic Performance in Blended Learning Using Artificial Neural Networks’, International Journal of Artificial Intelligence & Applications, 7(5), 17–29. https://doi.org/10.5121/ijaia.2016.7502.
Zhang, Y., Duan, J., Liu, R., Petropoulos, E., Feng, Y., Xue, L., ... & He, S. (2025). Efficient magnetic capture of PE microplastic from water by PEG modified Fe3O4 nanoparticles: Performance, kinetics, isotherms and influence factors. Journal of Environmental Sciences, 147, 677-687.‏ https://doi.org/10.1016/J.JES.2023.07.025.
Zhao, W., Jiang, J., Liu, M., Tu, T., Wang, L., & Zhang, S. (2024). Exploring correlations between microplastics, microorganisms, and water quality in an urban drinking water source. Ecotoxicology and Environmental Safety, 275, 116249.‏ https://doi.org/10.1016/j.ecoenv. 2024.116249.
Zou, H. H., He, P. J., Peng, W., Lan, D. Y., Xian, H. Y., Lü, F., & Zhang, H. (2025). Rapid detection of colored and colorless macro-and micro-plastics in complex environment via near-infrared spectroscopy and machine learning. Journal of Environmental Sciences, 147, 512-522. https://doi.org/10.1016/J.JES.2023.12.004.