نقش دوگانۀ هوش مصنوعی در سبزشویی شرکتی (مرور ادبیات و مسیرهای پژوهشی آینده)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه حسابداری، دانشگاه آزاد اسلامی، اراک، ایران

2 دانشیار گروه حسابداری، واحد اراک، دانشگاه آزاد اسلامی، اراک، ایران

چکیده

هدف این مقاله مروری، تحلیل نقش دوگانه هوش مصنوعی در سبزشویی شرکتی و بررسی این موضوع است که چگونه این فنّاوری می‌تواند هم‌زمان به‌عنوان ابزاری برای تقویت واقعی پایداری زیست‌محیطی و نیز به‌عنوان سازوکاری برای خلق ادعاهای گمراه‌کننده زیست‌محیطی مورداستفاده قرار گیرد. تمرکز اصلی پژوهش بر واکاوی شواهد نظری و تجربی پیرامون کارکردهای هوش مصنوعی و همچنین بررسی ظرفیت این فنّاوری در شکل‌دهی سبزشویی است. روش پژوهش مبتنی بر مرور نظام‌مند ادبیات شامل تحلیل مطالعات منتشرشده در پایگاه‌های معتبر بین‌المللی است. برای این منظور، منابع علمی با رویکردهای تجربی، مفهومی و نظری بررسی‌شده و یافته‌ها در قالب مفاهیم کلیدی نقش دوگانه هوش مصنوعی دسته‌بندی شده‌اند. نتایج نشان می‌دهد که پیامدهای نهایی به‌کارگیری هوش مصنوعی کاملاً وابسته به سازوکارهای حکمرانی شرکتی، انگیزه‌های مدیریتی، چارچوب‌های نظارتی و کیفیت شفافیت داده‌ها است؛ درحالی‌که این فنّاوری قادر است سطح بالایی از شفافیت، کشف سبزشویی و ارتقای عملکرد واقعی پایداری را ایجاد کند، در صورت استفاده فرصت‌طلبانه می‌تواند سبزشویی را تقویت کرده و آن را پیچیده‌تر و کم‌ردپاتر سازد. نتیجه‌گیری کلی پژوهش بیان می‌کند که آینده نقش هوش مصنوعی در پایداری زیست‌محیطی نه به ماهیت فنّاوری، بلکه به نحوه پیاده‌سازی، استانداردهای گزارش‌دهی، کنترل‌های نظارتی و انگیزه‌های سازمانی بستگی دارد. همچنین پیشنهاد می‌شود پژوهش‌های آینده به‌سمت مطالعات تجربی، توسعۀ معیارهای سنجش سبزشویی مبتنی بر هوش مصنوعی، ارزیابی اثرات نهادی و تحلیل بلندمدت پیامدهای حکمرانی فنّاوری حرکت کنند.
هدف این مقاله مروری، تحلیل نقش دوگانه هوش مصنوعی در سبزشویی شرکتی و بررسی این موضوع است که چگونه این فنّاوری می‌تواند هم‌زمان به‌عنوان ابزاری برای تقویت واقعی پایداری زیست‌محیطی و نیز به‌عنوان سازوکاری برای خلق ادعاهای گمراه‌کننده زیست‌محیطی مورداستفاده قرار گیرد. تمرکز اصلی پژوهش بر واکاوی شواهد نظری و تجربی پیرامون کارکردهای هوش مصنوعی و همچنین بررسی ظرفیت این فنّاوری در شکل‌دهی سبزشویی است. روش پژوهش مبتنی بر مرور نظام‌مند ادبیات شامل تحلیل مطالعات منتشرشده در پایگاه‌های معتبر بین‌المللی است. برای این منظور، منابع علمی با رویکردهای تجربی، مفهومی و نظری بررسی‌شده و یافته‌ها در قالب مفاهیم کلیدی نقش دوگانه هوش مصنوعی دسته‌بندی شده‌اند. نتایج نشان می‌دهد که پیامدهای نهایی به‌کارگیری هوش مصنوعی کاملاً وابسته به سازوکارهای حکمرانی شرکتی، انگیزه‌های مدیریتی، چارچوب‌های نظارتی و کیفیت شفافیت داده‌ها است؛ درحالی‌که این فنّاوری قادر است سطح بالایی از شفافیت، کشف سبزشویی و ارتقای عملکرد واقعی پایداری را ایجاد کند، در صورت استفاده فرصت‌طلبانه می‌تواند سبزشویی را تقویت کرده و آن را پیچیده‌تر و کم‌ردپاتر سازد. نتیجه‌گیری کلی پژوهش بیان می‌کند که آینده نقش هوش مصنوعی در پایداری زیست‌محیطی نه به ماهیت فنّاوری، بلکه به نحوه پیاده‌سازی، استانداردهای گزارش‌دهی، کنترل‌های نظارتی و انگیزه‌های سازمانی بستگی دارد. همچنین پیشنهاد می‌شود پژوهش‌های آینده به‌سمت مطالعات تجربی، توسعۀ معیارهای سنجش سبزشویی مبتنی بر هوش مصنوعی، ارزیابی اثرات نهادی و تحلیل بلندمدت پیامدهای حکمرانی فنّاوری حرکت کنند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Dual Role of Artificial Intelligence in Corporate Greenwashing: A Literature Review and Future Research Directions

نویسندگان [English]

  • Maryam alsadat Hoseini 1
  • Ali Lalbar 2
1 M.A. Student in Accounting, Islamic Azad University, Arak, Iran
2 Associate professor, Department of Accounting, Ar.c, Islamic Azad University, Arak, Iran
چکیده [English]

Extended Abstract
Introduction
In recent years, the rapid advancement of artificial intelligence (AI) has fundamentally reshaped corporate practices, governance mechanisms, and sustainability reporting systems. Concurrently, growing environmental concerns and mounting stakeholder pressure have compelled firms to adopt green strategies and disclose environmental, social, and governance (ESG) information. Within this evolving landscape, a critical paradox has emerged: while AI possesses considerable potential to enhance transparency, operational efficiency, and environmental performance, it can simultaneously serve as a sophisticated instrument for facilitating corporate greenwashing. This extended abstract offers a comprehensive analytical synthesis of AI's dual role in advancing genuine environmental performance and in enabling the strategic manipulation of sustainability narratives.
Corporate greenwashing refers to the deliberate dissemination of misleading or exaggerated environmental claims to shape stakeholder perceptions without implementing substantive ecological improvements. The extant management and sustainability literature conceptualizes greenwashing not as a mere communication error but as a strategic organizational behavior, deeply rooted in misaligned incentives, competitive pressures, weak regulatory oversight, and legitimacy-seeking motives. Empirical evidence indicates that greenwashing erodes stakeholder trust, damages corporate reputation, weakens employee organizational identification, and generates long-term financial risks for firms.
AI technologies particularly machine learning, deep learning, and natural language processing (NLP) have introduced novel dynamics to this phenomenon. On one hand, AI systems can be deployed to detect inconsistencies between corporate environmental claims and actual performance. By analyzing vast volumes of structured and unstructured data including sustainability reports, regulatory filings, satellite imagery, social media content, and third-party audit records AI enables more precise identification of discrepancies, biases, and exaggerations in corporate disclosures. NLP models can systematically flag vague, ambiguous, or excessively promotional language in sustainability reports, thereby empowering regulators, investors, rating agencies, and civil society organizations to scrutinize corporate claims more effectively.
Conversely, these same technological capabilities enable corporations to craft highly polished, persuasive, and visually compelling sustainability narratives without corresponding improvements in actual environmental practices. Large language models and generative AI systems can produce sophisticated "green storytelling," optimize marketing messaging, and strategically frame disclosures to enhance the perception of environmental responsibility. This emerging phenomenon, increasingly termed algorithmic greenwashing, represents a more complex and technologically mediated form of information asymmetry, significantly challenging stakeholders' ability to distinguish between authentic sustainability practices and AI-enhanced symbolic actions.
A major concern in this context is the "black box" nature of many AI models. Deep learning systems frequently operate with limited interpretability, complicating the auditability of AI-generated reports and increasing the risk of selective disclosure, data manipulation, and strategic omission. Consequently, new forms of informational opacity may arise, potentially reinforcing rather than constraining managerial opportunism. The absence of universally accepted standards for AI-assisted sustainability reporting further exacerbates this challenge, creating fertile ground for increasingly sophisticated greenwashing strategies.
Methods and Material
This study systematically reviews the conceptual and empirical literature on corporate greenwashing, AI governance, sustainability reporting, and responsible innovation. It identifies several critical research gaps. First, there is a notable lack of standardized, AI-based metrics for detecting greenwashing across industries and countries. Second, empirical studies relying on real operational and environmental performance data remain limited, with most contributions focusing on conceptual frameworks. Third, the ethical dimensions of AI-enabled greenwashing, including accountability, data integrity, and algorithmic bias, have not been sufficiently addressed in existing research.
Results and Discussion
This study systematically reviews the conceptual and empirical literature on corporate greenwashing, AI governance, sustainability reporting, and responsible innovation. It identifies several critical research gaps. First, there is a notable absence of standardized, AI-based metrics for detecting greenwashing across industries and jurisdictions. Second, empirical studies drawing on actual operational and environmental performance data remain scarce, with most contributions confined to conceptual frameworks. Third, the ethical dimensions of AI-enabled greenwashing including issues of accountability, data integrity, and algorithmic bias have been insufficiently addressed in the extant literature.
Conclusion
The analysis reveals that AI's impact on corporate greenwashing is highly context-dependent. In institutional environments characterized by robust regulatory oversight, independent auditing, strong internal control systems, and active stakeholder engagement, AI tends to function as a monitoring and governance-enhancing mechanism. Under such conditions, AI facilitates green innovation, improves environmental risk management, and bolsters the credibility of ESG disclosures. Conversely, in weak regulatory contexts marked by limited transparency requirements and intense competitive pressure, AI may be exploited as a strategic instrument for symbolic compliance and reputational manipulation.
The paper also examines the environmental paradox inherent in AI itself. While AI can contribute to optimizing energy consumption, reducing emissions, improving waste management, and supporting renewable energy systems, the computational intensity of large-scale models and data centers generates a substantial carbon footprint. This paradox raises fundamental questions regarding the net efficacy of AI-driven sustainability initiatives and underscores the importance of emerging paradigms such as Green AI, which advocate for energy-efficient model design, transparent disclosure of computational costs, and environmentally responsible deployment strategies.
From a governance perspective, the study emphasizes the necessity of developing integrated regulatory and managerial frameworks. Such frameworks should incorporate algorithmic transparency requirements, mandatory disclosure of training data provenance and characteristics, independent algorithmic audits, and harmonized ESG reporting standards. The findings indicate that mandatory third-party verification of AI-generated sustainability content can substantially mitigate greenwashing risks. Moreover, the integration of blockchain-based verification mechanisms and real-time environmental monitoring systems can enhance data integrity and traceability in sustainability reporting.
 

کلیدواژه‌ها [English]

  • Keywords: Corporate green washing
  • artificial intelligence Environmental sustainability،Corporate Governance
References
Alaagib, S. B., Alamri, Y., Alhashim, J., & Alduwais, A. A. (2025). The ecological footprint of AI: Informing sustainable development in agriculture. Journal of Experimental Biology and Agricultural Sciences, 5(1), 101–115.
Ali, S. (2023). Explainable Artificial Intelligence (XAI): What we know and recent techniques. Article in scientific journal, 12(4), 45–58.
Bernini, F., & La Rosa, F. (2024). Research in the greenwashing field: Concepts, theories, and potential impacts on economic and social value. Journal of Management & Governance, 28(2), 405–444.
Bernstein, M. S., Levi, M., Magnus, D., Rajala, B., Satz, D., & Waeiss, C. (2021). ESR: Ethics and Society Review of Artificial Intelligence Research. ArXiv, abs/2101.01234(1), 1–20.
Bühlmann, M., Fill, H.-G., & Curty, S. (2025). Blockchain Data Analytics: A Scoping Literature Review and Directions for Future Research. Journal of Financial Technology Review, 10(3), 200–215.
De Freitas Neto, S. et al. (2020). Concepts and forms of greenwashing: A systematic review. Environmental Sciences Europe, 32(1), 19.
Du, B., Hu, J., & Peng, Y. (2022). An empirical study on the impact of corporate greenwashing on financial performance. BCP Business & Management, 45(1), 112–128.
European Securities and Markets Authority (ESMA). (2023). The financial impact of greenwashing controversies. ESMA Reports, 15(2), 1–50.
Feghali, K., Najem, R., & Metcalfe, B. D. (2025). Greenwashing in the era of sustainability: A systematic literature review. Corporate Governance and Sustainability Review, 9(1), 18–31.
Fiandriano, S., Monastrello, A., & Costantini, V. (2023). Research on greenwashing: Concepts, theories, and potential impacts on economic and social value. Journal of Management and Governance, 27(3), 601–620.
Jabbar, A., Akhtar, P., & Ali, S. I. (2024). The interplay between blockchain and big data analytics for enhancing supply chain value creation in micro, small, and medium enterprises. Annals of Operations Research, 330(1), 55–78.
Jandaghi, M., Naderi Bani, M., Tabatabaeenasab, S. M., & Sabokro, M. (2022). Analysis of the intellectual structure of greenwashing studies and corporate social responsibility based on articles indexed in Web of Science. Journal of Business Ethics, 180(4), 1001–1015.
Järvenpää, H., Lago, P., Bogner, J., Lewis, G., Muccini, H., & Özkaya, İ. (2024). A synthesis of green architectural tactics for ML-enabled systems. Proceedings of the 46th International Conference on Software Engineering: Software Engineering in Society. ICSE-SEIS, (24), 130–141.
Khan, A. A., Badshah, S., Liang, P., Niazi, M., Akbar, M. A., & et al. (2021). Ethics of AI: A Systematic Literature Review of Principles and Challenges. ArXiv, abs/2105.05000(2), 1–35.
Kim, S. W. (2022). Recent Advances of Artificial Intelligence in Manufacturing: Review and Future Prospects. Springer AI Series, 8(2), 75–92.
Kogo, A., & Sima, S. (2021). Green, blue or black: what characteristics determine greenwashing?. Environment, Development and Sustainability, 24(10), 4024–4045.
Li, Y., Zhou, G., & Huang, R. (2023). Greenwashing in corporate social responsibility: A dual analysis of the impact on employees’ trust and identity. Sustainability, 15(22), 15693.
Lin, W. L., Chong, S. C., Pek, C. K., Yong, J. Y., Lee Yong Ming, K., & Leow, N. (2025). The impact of greenwashing: Risks and implications for corporate performance and stakeholder trust. Advances in Social Science, Education and Humanities Research, (889), 77–94.
Liu, J., Yeoh, W., Qu, Y., & Gao, L. (2022). Blockchain-based Digital Twin for Supply Chain Management: State‑of‑the‑Art Review and Future Research Directions. IEEE Transactions on Digital Twins, 3(1), 50–65.
Manaswi, K. (2025). Is Blockchain-Backed Corporate Governance the Way Forward? A Review and Future Research Agenda. ACR Journal, 1(1), 1–15.
Moodaley, W., & Telukdarie, A. (2023). Greenwashing, sustainability reporting, and artificial intelligence: A systematic literature review. Sustainability, 15(2), 801–819.
Mu, H., Luo, Y., & Xie, Y. (2023). Greenwashing in corporate social responsibility: A dual-pathway model of trust and employee–company identification. Sustainability, 15(22), 15693.
Ngai, X. et al. (2023). Application of Artificial Intelligence in the Healthcare Sector: A Systematic Review of Benefits, Challenges, Methodology, and Practices. International Journal of Healthcare Systems, 7(3), 200–220.
Pachot, A., & Patissier, C. (2022). Towards sustainable artificial intelligence: An overview of environmental protection uses and issues. arXiv.org, (arXiv:2212.11738).
Pachot, A., & Patissier, C. (2022). Towards Sustainable Artificial Intelligence: An Overview of Environmental Protection Uses and Issues. AI Ethics Journal, 4(3), 300–315.
Padmaja, C. V. R., Narayana, S. L., Anga, G. L., & Bhansali, P. K. (2024). The rise of artificial intelligence: a concise review. IAES International Journal of Artificial Intelligence, 13(2), 2226–2235.
Palaiokrassas, G., Bouraga, S., & Tassiulas, L. (2024). Machine Learning on Blockchain Data: A Systematic Mapping Study. IEEE Access, 12, 50001–50015.
Papagiannidis, E. et al. (2025). Responsible artificial intelligence governance: A review and conceptual framework. Journal of Business Ethics / Technical Journal, 90(1), 1–25.
Peretz‑Andersson, E. (2022). Empirical AI Transformation Research: A Systematic Review of Organizational Change. EInformatica, 18(4), 401–420.
Poiriazi, E., Zournatzidou, G., Konteos, G., & Sariannidis, N. (2025). Analyzing the interconnection between environmental, social, and governance (ESG) criteria and corporate corruption: Revealing the significant impact of greenwashing. Administrative Sciences, 15(3), 100.
Polcumpally, A. T., Pandey, K. K., & Bandrana, A. K. (2024). Blockchain Governance and Trust: A Multi-Sectors Thematic Systematic Review and Exploration of Future Research Directions. Heliyon, 10(12), e22290.
Raihan, A., Paul, A., Rahman, M. S., Islam, S., Paul, P., & Karmakar, S. (2024). Artificial Intelligence (AI) for environmental sustainability: A concise review of technology innovations in energy, transportation, biodiversity, and water management. Journal of Technology Innovations and Energy, 3(2), 64–73.
Ren, X., Hu, S., Sun, X., & Zhou, D. (2025). The impact of artificial intelligence on corporate greenwashing: Evidence from the Chinese listed firms. Journal of Accounting Literature, 50(1), 1–19.
Rohde, F., Wagner, J., Meyer, A., Reinhard, P., Voss, M., Petschow, U., & Möllen, A. (2024). Broadening the perspective for sustainable artificial intelligence: Sustainability criteria and indicators for Artificial Intelligence systems. Current Opinion in Environmental Sustainability, 66, 101411.
Rosen, M. A. (2025). Artificial intelligence and sustainable development. European Journal of Sustainable Development Research, 9(1), em0275.
Rothbacher, N., Rodolfa, K. T., Bhaskar, M., Maneri, E., Tsang, C., & Ho, D. E. (2025). Artificial Intelligence in Environmental Protection: The Importance of Organizational Context from a Field Study in Wisconsin. ArXiv, abs/2503.01122(1), 1–25.
Saeed, W., & Omlin, C. (2021). Explainable AI (XAI): A Systematic Meta-Survey of Current Challenges and Future Opportunities. ArXiv, abs/2107.07000(3), 1–40.
Seele, P., & Schultz, M. (2022). From Greenwashing to Machinewashing: A Model and Future Directions Derived from Reasoning by Analogy. Journal of Business Ethics, 181(3), 703–718.
Shen, L., Li, Z., Liang, Y., Feng, Y., & Zhang, Z. (2025). Artificial intelligence adoption and corporate ESG performance: Evidence from a refined large‑language model. Frontiers in Artificial Intelligence, 8, 1691468.
Singla, D., Soni, V., Gautam, N., Bhattarai, S., Sharma, A., Sharma, A., & Kaur, N. (2023). A Review of Recent Advances in Artificial Intelligence and Machine Learning. SSRN Electronic Journal, (2), 1–50.
Su, Y., Liang, Y., & Wang, H. (2023). The impact of corporate greenwashing on employees’ environmental performance: From the perspective of individual and organizational value alignment. Sustainability, 15(4), 3498.
Telukdarie, A., & Moodaley, W. (2023). Greenwashing, sustainability reporting and artificial intelligence: a thematic and bibliometric analysis. Sustainability, 15(11), 9001.
Vinuesa, R., Azizpour, H., Leite, I., Balaam, M., Dignum, V., Domisch, S., … Nerini, F. F. (2019). The role of artificial intelligence in achieving the Sustainable Development Goals. ArXiv, abs/1907.02286(1), 1–30.
Wafirli, A., Wijayanti, P., Kartikasari, L., & Shodiq, M. J. (2025). Peran Artificial Intelligence terhadap Praktik Greenwashing dalam Sustainability Report: Systematic Literature Review. Jurnal Akuntansi dan Audit Syariah (JAAiS), 6(1), 1–14.
Woon, W. L., & Johl, S. K. (2025). The impact of greenwashing: Risks and implications for corporate performance and stakeholder trust. International Journal of Corporate Risk, 2(1), 50–65.
Wright, D., Igel, C., Samuel, G., & Selvan, R. (2023). Efficiency is not enough: A critical perspective of environmentally sustainable AI. ArXiv, abs/2311.05000(1), 1–18.
Yang, Z., Nguyen, T. T. H., Nguyen, H. N., Nguyen, T. T. N., & Cao, T. T. (2020). Greenwashing behaviors: Causes, classification and consequences based on a systematic literature review. Journal of Business Economics and Management, 21(5), 1486–1507.
Zhan, X., Lian, X., & Dai, S. (2025). Correcting or Concealing? The Impact of Digital Transformation on the Greenwashing Behavior of Heavily Polluting Enterprises. Sustainability, 17(1), 356.